Bayesian object identification

نویسنده

  • MERRILEE A. HURN
چکیده

This paper addresses the task of locating and identifying an unknown number of objects of different types in an image. Baddeley & Van Lieshout (1993) advocate marked point processes as object priors, whereas Grenander & Miller (1994) use deformable template models. In this paper elements of both approaches are combined to handle scenes containing variable numbers of objects of different types, using reversible jump Markov chain Monte Carlo methods for inference (Green, 1995). The naive application of these methods here leads to slow mixing and we adapt the model and algorithm in tandem in proposing three strategies to deal with this. The first two expand the model space by introducing an additional ‘unknown’ object type and the idea of a variable resolution template. The third strategy, utilising the first two, augments the algorithm with classes of updates which provide intuitive transitions between realisations containing different numbers of cells by splitting or merging nearby objects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Object-oriented Bayesian networks for DNA mixture analyses

In this paper we show how to represent with object-oriented Bayesian networks the mathematical model described in Cowell et al. (2006a), for identification problems involving DNA mixture traces. We present detailed descriptions of each component class used to build up the networks, and we apply the networks to an example. Some key words and phrases: Objectoriented Bayesian networks, DNA mixture...

متن کامل

Object-Based Classification of UltraCamD Imagery for Identification of Tree Species in the Mixed Planted Forest

This study is a contribution to assess the high resolution digital aerial imagery for semi-automatic analysis of tree species identification. To maximize the benefit of such data, the object-based classification was conducted in a mixed forest plantation. Two subsets of an UltraCam D image were geometrically corrected using aero-triangulation method. Some appropriate transformations were perfor...

متن کامل

Author gender identification from text using Bayesian Random Forest

Nowadays high usage of users from virtual environments and their connection via social networks like Facebook, Instagram, and Twitter shows the necessity of finding out shared subjects in this environment more than before. There are several applications that benefit from reliable methods for inferring age and gender of users in social media. Such applications exist across a wide area of fields,...

متن کامل

Source Conflicts in Bayesian Identification

In Bayesian identification an ID source is in conflict with the other ID sources, if both provide substantially different, reliable information on a tracked object. After discussing some general aspects of source conflicts and introducing two established conflict-definition approaches, it is denoted that these approaches each show a counterintuitive effect. By applying a conflict definition fro...

متن کامل

Loss Functions for Bayesian Image Analysis

This paper discusses the role of loss functions in Bayesian image classification, object recognition and identification, and reviews the use of a particular loss function which produces visually attractive estimates.

متن کامل

Objects Identification in Object-Oriented Software Development - A Taxonomy and Survey on Techniques

Analysis and design of object oriented is onemodern paradigms for developing a system. In this paradigm, there are several objects and each object plays some specific roles. Identifying objects (and classes) is one of the most important steps in the object-oriented paradigm. This paper makes a literature review over techniques to identify objects and then presents six taxonomies for them. The f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997